How the RS-232C serial bus is interfaced to TTL logic device?

Subject Peripheral and Interfacing
NU Year Set: 5.(d) Marks: 4 Year: 2017

One of the tools we use most when debugging our projects is serial input/output. Serial is very easy to implement, and it allows you to send/receive any data you need from your microcontroller to a computer's serial port so it can be viewed using a terminal emulator. These two devices are compatible from a software perspective, however, you can't just hook a microcontroller up to a computer because the hardware interfaces are not compatible.

Most microcontrollers these days have built-in UARTs (universally asynchronous receiver/transmitter) that can be used to receive and transmit data serially. UARTs transmit one bit at a time at a specified data rate (i.e. 9600bps, 115200bps, etc.). This method of serial communication is sometimes referred to as TTL serial (transistor-transistor logic). Serial communication at a TTL level will always remain between the limits of 0V and Vcc, which is often 5V or 3.3V. A logic high ('1') is represented by Vcc, while a logic low ('0') is 0V.

The serial port on your computer (if it's lucky enough to have one, they're quickly becoming a relic) complies with the RS-232 (Recommended Standard 232) telecommunications standard. RS-232 signals are similar to your microcontroller's serial signals in that they transmit one bit at a time, at a specific baud rate, with or without parity and/or stop bits. The two differ solely at a hardware level. By the RS-232 standard, a logic high ('1') is represented by a negative voltage – anywhere from -3 to -25V – while a logic low ('0') transmits a positive voltage that can be anywhere from +3 to +25V. On most PCs these signals swing from -13 to +13V.

The more extreme voltages of an RS-232 signal help to make it less susceptible to noise, interference, and degradation. This means that an RS-232 signal can generally travel longer physical distances than their TTL counterparts, while still providing a reliable data transmission.

Login to post your comment.